

Synthese, Strukturen und Eigenschaften der Cyclothiaselenazenium-Kationen $[Se_2N_2S]_2^{2+}$, $[XSe_2N_2S]^+$, $[Se_2N_2S]^{2+}$, $[S_3SeN_5]^+$ sowie $Cl_2Se_2N_2S$ und $SeSN_2 \cdot TiCl_4$

Alois Haas*^a, Jörg Kasprowski^a, Klaus Angermund^b, Peter Betz^b, Carl Krüger^b, Yi-Hung Tsay^b und Stefan Werner^b

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum^a, Postfach 102148, W-4630 Bochum

Max-Planck-Institut für Kohlenforschung^b, Lembkestr. 5, W-4330 Mülheim a.d. Ruhr

Eingegangen am 5. Februar 1991

Key Words: Selane, bis(sulfinylamido)- / Diselane, trimethylsilyl- / 1,3,4,2,5-Thiadiselenadiazolium / 1,3,2,4-Thiaselenadiazete – Titanium tetrachloride

Synthesis, Structures, and Properties of Cyclothiaselenazenium Cations $[Se_2N_2S]_2^2^+$, $[XSe_2N_2S]^+$, $[Se_2N_2S]^2^+$, $[SeS_3N_5]^+$ as well as $Cl_2Se_2N_2S$ and $SeSN_2 \cdot TiCl_4$

Bis(sulfinylamino)selane (1), prepared from Se_2Cl_2 and $(CH_3)_3SiNSO$, reacts with Lewis acids such as MF_5 (M = As, Sb, Nb) and BF₃ to form bis(1,3,4,2,5-thiadiselenadiazolium) cations (3) with counter anions AsF_6^- (3a), SbF_6^- (3b), NbF_6^- (3c), BF_4^- (3d). Treatment of Se_2Cl_2 with LiN[Si(CH₃)₃]₂ leads to [(CH₃)₃Si]₂NSe_xN[Si(CH₃)₃]₂ (x = 1, 2a; 2, 2b). From 2a and $SeCl_4$ explosive Se_4N_4 is obtained. Chlorination of 3a and 3c gives [CISe₂N₂S]⁺[MF₆]⁻ (M = As, 4a, and Nb, 4c). Analogous bromination of 3a provides [BrSe₂N₂S]⁺[AsF₆]⁻ (4b). This type of chlorinated five-membered rings is also obtained directly

Die Chemie selenhaltiger Chalkogen-Stickstoff-Heterocyclen hat in den letzten Jahren eine stürmische Entwicklung genommen. Ein dem $S_6N_4^{2+1}$ analoges Kation $Se_4S_2N_4^{2+1}$ ist erstmals 1978 bei der Umsetzung von (Me₃Si)₂N-S- $N(SiMe_3)_2$ mit SeX₄ (X = Cl oder Br) postuliert worden²). Die Darstellung der Salze $[Se_2N_2S^+MF_6^-]_2$ (M = As oder Sb) ist 1981 durch Reaktion von S₄N₄ mit Selen-Kationen gelungen. Die Strukturen dieser beiden Verbindungen sind durch Einkristallstrukturanalysen bestätigt worden³⁾. Seit 1988 werden vermehrt auch Reaktionen von Se₄N₄ beschrieben⁴⁻⁷⁾. Durch Umsetzung von Se₄N₄ mit Se₄²⁺(AsF₆)₂ oder AsF₅ gelingt die Darstellung des ersten binären Selen-Stickstoff-Kations, $Se_6N_4^{2+8}$. Durch Oxidation dieser Spezies mittels AsF₅ kann auch das unerwartet stabile Dikation $Se_3N_2^{2+}$ erhalten werden⁸⁾. Auch halogenierte Ringsysteme der Form ClSeNSNS+ sind kürzlich beschrieben worden^{9,10)}. Für die Verbindung der Zusammensetzung Cl₂N₂S₂-Se¹⁰ wird neben der ionischen Spezies Cl⁻[ClSeNSNS]⁺ auch die kovalente Form Cl₂SeNSNS beobachtet. Ziel dieser Arbeit ist die gezielte Synthese sowie eindeutige Charakterisierung neuer selenhaltiger Chalkogen-Stickstoff-Heterocyclen.

Ausgangsverbindungen zur Synthese selenhaltiger Chalkogen-Stickstoff-Heterocyclen

Bis(sulfinylamino)sulfan reagiert mit TiCl₄ und SbCl₅ zum S_2N_2 -Ring¹¹⁾ bzw. S₄N₄-Käfig¹²⁾. Es erschien uns daher fol-

from 1 and SbCl₅ and PCl₅ or SeCl₄. The products isolated are $[ClSe_2N_2S]^+[SbCl_6]^-$ (4d) and $[ClSe_2N_2S]^+Cl^-$ (4e). – A covalent species 5, isomeric to 4e, is obtained from 1 and POCl₃, and a four-membered ring SeSN₂ · TiCl₄ (6) from 1 and TiCl₄. When 3a or 1 is treated with a two- or threefold excess of AsF₅ the stable dication $[Se_2N_2S]^{2+}$ (7) is formed. It arises also from 4e and AgAsF₆. Attempts to replace TiCl₄ in 6 by AsF₅ lead to $[Se_3N_5]^+[AsF_6]^-$ (8) with a bicyclic structure for the cation. X-ray structure analyses for 1, 4c, 4d, 4e, 5, and 8 are performed.

gerichtig, das analog aufgebaute Bis(sulfinylamino)selan (1) zu synthetisieren¹³⁾ und dessen Verhalten gegenüber Lewissäuren zu untersuchen. In sehr guter Ausbeute entsteht 1 aus Se₂Cl₂ und Me₃SiNSO gemäß (1). Sämtliche Eigenschaften von 1 sind mit denen von $S(NSO)_2^{14}$ vergleichbar. Nach der Einkristallstrukturanalyse sind beide Substanzen isostrukturell (s. Abb. 1). Neben 1 stellt Bis[bis(trimethylsilyl)amino]selan (2a) ein weiteres Synthon zur Synthese von

$$Se_2Cl_2 + 2 Me_3SiNSO \longrightarrow Se(NSO)_2 + Se + 2 Me_3SiCl_1$$
(1)

$$2 \operatorname{Se}_2 \operatorname{Cl}_2 + 4 \operatorname{LiN}(\operatorname{SiMe}_3)_2 \longrightarrow \operatorname{Se}[\operatorname{N}(\operatorname{SiMe}_3)_2]_2 + \operatorname{Se}_2[\operatorname{N}(\operatorname{SiMe}_3)_2]_2$$

Abb. 1. Molekülstruktur von 1; Abstände [Å] und Winkel [*]: Se-N 1.827(5), S-O 1.436(6), S-N 1.516(6); N*-Se-N 92.0(2), N-S-O 117.9(3), S-N-Se 123.2(3)

Se-S-N- oder Se-N-Heterocyclen dar. Bei der Umsetzung von Se₂Cl₂ mit LiN(SiMe₃)₂ entsteht gemäß (2) **2a** wie auch Bis[bis(trimethylsilyl)amino]diselan (**2b**). Während **2a** wie S[N(SiMe₃)₂]₂^{15,16)} leicht sublimierbare farblose Kristalle bildet, fällt **2b** in Form eines schwerflüchtigen gelben Öls an.

Umsetzung von 2a mit SeCl₄ oder SCl₂

Die Reaktion von **2a** mit SeCl₄ führt nicht zu dem erwarteten $[Se_3N_2]_2^{2+}$, sondern gemäß (3) unter Me₃SiCl-Abspaltung zum hochexplosiven Se₄N₄, das IR-spektroskopisch charakterisiert werden konnte¹⁷.

Bei der Umsetzung von 2a mit SCl_2 ist ein schwerflüchtiger, brauner Feststoff der Zusammensetzung ClN_2S_2Se zugänglich, für den insbesondere aufgrund des IR-Spektrums das kationische Ringsystem [SeNSNS⁺]₂ postuliert werden kann. Jedoch ist bislang eine Unterscheidung zwischen den beiden in (4) angegebenen Fünfringverknüpfungen nicht möglich.

$$2a + SeCl_4 \longrightarrow \frac{1}{2} Se_4N_4 + 4 Me_3SiCl$$
(3)
$$2a + SCl_2 \longrightarrow$$

$$\begin{bmatrix} \sqrt{N} & Se \cdots Se^{-N} \\ S & 1 & S \\ N & S \cdots S^{-N} \end{bmatrix}^{2+} \text{oder} \begin{bmatrix} \sqrt{N} & Se \cdots S^{-N} \\ S & 1 & Se \\ N & S \cdots Se^{-N} \end{bmatrix}^{2+} (4)$$

Umsetzung von 1 mit MF_5 (M = As, Sb, Nb) und BF_3

Reaktionen von 1 mit AsF₅ bzw. SbF₅ im Verhältnis 1:1 führen zu den erstmals von Gillespie et al.³⁾ beschriebenen Salzen Bis(1,3,4,2,5-thiadiselenadiazolium)-bis(hexafluoroarsenat) (**3a**) bzw. -bis(hexafluoroantimonat) (**3b**) gemäß (5). Weitgehende IR-spektroskopische Differenzen zwischen den hier neu dargestellten Verbindungen **3a** und **3b** sowie den erstmals von Gillespie et al.³⁾ publizierten, welche eine unerwartet hohe Anzahl von Schwingungsbanden zeigen, ließen anfänglich an der Identität der Substanzen zweifeln. Nach magnetischen Messungen und ESR-spektroskopischen Untersuchungen besitzt **3a** im festen Zustand keinerlei Radikalcharakter. In SO₂-Lösung dagegen ist das Radikalkation Se₂N₂S⁺⁺ nachweisbar.

$$1 + MF_{x} \longrightarrow \begin{bmatrix} \sqrt{N} & Se \cdots Se^{-N} \\ S & | & | & \frac{3}{3} & \frac{1}{3} \\ N & Se \cdots Se^{-N} \end{bmatrix}^{2+} (MF_{y}^{-})_{2} \quad (5)$$

$$x = 3 \text{ für } M = B$$

$$x = 5 \text{ für } M = As,$$

$$Sb, Nb \qquad \frac{3a \ b \ c \ d}{M} \xrightarrow{As \ Sb \ Nb \ B}$$

$$y = 6 \ 6 \ 6 \ 4$$

Auch andere Arbeitsgruppen konnten beweisen, daß in Analogie zu $S_3N_2^{+\cdot 18}$ in $Se_2N_2S^{+\cdot 19}$ ein delokalisiertes π -Elektronen-System mit zwei äquivalenten Stickstoffatomen vorliegt. Das ESR-Spektrum zeigt für $Se_2N_2S^{+\cdot}$ eine Signalaufspaltung zu einem Quintett mit einer Kopplungskonstanten a_N von 3.0 G. Die hier beschriebene Synthese der Salze **3a** und **3b** ist aufgrund der besseren Zugänglichkeit der Ausgangsverbindungen sowie der einfachen Isolierung und Reinheit der Produkte gegenüber der literaturbekannten wesentlich einfacher und auch universeller einsetzbar. So sind durch Umsetzungen von 1 mit NbF₅ bzw. BF₃ die neuen Derivate Bis(1,3,4,2,5-thiadiselenadiazolium)bis(hexafluoroniobat) (**3c**) und -bis(tetrafluoroborat) (**3d**) zugänglich. Wie **3a** können **3c** und **3d** als dunkelbraune Kristalle isoliert werden. Sämtliche dimeren Cyclothiadi(selenazenium)-Salze **3a**-**d** sind zwar luft- und feuchtigkeitsempfindlich, zeichnen sich aber durch eine relativ hohe thermische Stabilität aus. Zersetzung erfolgt zum Teil erst oberhalb 150°C.

Umsetzungen von 3a und 3c mit Chlor und Brom

Die gute Zugänglichkeit von 3a-d ermöglichte es, erstmals Reaktionen dieser Spezies zu untersuchen. In Analogie zu den Umsetzungen von $S_3N_2^+$ mit Chlor oder Brom, die zu den halogenierten Fünfringen XSNSNS⁺ führen²⁰, sollte durch Reaktionen von **3a,b** und **c** in SO₂ die Synthese der bislang unbekannten Halogenocyclothiadi(selenazenium)-Kationen möglich sein.

Abb. 2. Molekülstruktur von 4c; ausgewählte Abstände [Å] und Winkel [*]: Se1–Se2 2.377(2), Se1–N2 1.760(9), Se1–Cl 2.211(3), Se2–N1 1.77(1), S–N1 1.53(1), S–N2 1.594(9), Cl–Se1–N2 102.6(3), Cl–Se1–Se2 101.9(1), N2–Se1–Se2 94.1(3), N1–Se2–Se1 92.4(3), N2–S–N1 111.9(5), S–N1–Se2 121.7(6), S–N2–Se1 118.8(5)

Wie erwartet, entstehen auf diesem Wege die Salze 4a-cdes 3-Halogen-1,3,4,2,5-thiadiselenadiazolium-Kations gemäß (6), die in nahezu quantitativer Ausbeute in orangefarbenen Kristallen isoliert werden. An Luft zersetzten sie sich, ähnlich wie auch 3a-d, spontan, unter trockenem Argon

können sie jedoch wochenlang bei $22 \,^{\circ}$ C aufbewahrt werden, ohne daß merkliche Zersetzung eintritt. In SO₂ gelöst zeigen sie ein für die Substanzklasse XSeNSNSe⁺ charakteristisches ⁷⁷Se-NMR- sowie IR-Spektrum (s. spektroskopische Untersuchungen). Exemplarisch für die drei Salze ist von **4c** eine Kristallstrukturanalyse durchgeführt worden (s. Abb. 2).

Obwohl in den letzten Jahren eine Reihe hauptsächlich kationischer Selen-Iod-Verbindungen wie z. B. $\text{Se}_6\text{I}_2^{2}$ ^{+ 21)} beschrieben worden sind, gelang die Synthese von $\text{ISe}_2\text{N}_2\text{S}^+\text{As}\text{F}_6^-$ nach (6) nicht. Erfolglos blieb auch die Umsetzung von 1 mit SnCl₄.

Reaktionen von 1 mit SbCl₅

Anders als die Umsetzungen von $S(NSO_2)_2$ mit $SbCl_5$, die zu $S_4N_4 \cdot SbCl_5$ ¹²⁾ führen, reagiert 1 mit $SbCl_5$ im Verhältnis 3:2 unter SO_2 -Eliminierung zu orangefarbenen Kristallen der Zusammensetzung $Cl_7N_2SSbSe_2$. IR- und Raman-spektroskopische Untersuchungen zeigen, daß hierbei die halogenierte Fünfringspezies 3-Chlor-1,3,4,2,5-thiadiselenadiazolium-hexachloroantimonat (4d) gemäß (7) entstanden ist. Die Struktur von 4d konnte zusätzlich durch magnetische Messungen, ⁷⁷Se-NMR-Untersuchungen sowie durch eine Kristallstrukturanalyse (Abb. 3) bestätigt werden.

Abb. 3. Molekülstruktur von 4d; ausgewählte Abstände [Å] und Winkel [*]: Se1–Se2 2.359(2), Se1–N2 2.02(2), Se1–Cl1 2.188(3), Se2–N1 1.80(2), S–N1 1.49(2), S–N2 1.46(2), Cl1–Se1–N2 115.1(5), Cl1–Se1–Se2 106.1(1), N2–Se1–Se2 81.1(4), N1–Se2–Se1 93.6(5), N2–S–N1 107.6(9), S–N1–Se2 120(1), S–N2–Se1 113.4(9)

Umsetzungen von 1 mit PCl₅, SeCl₄ und POCl₃

Sowohl bei der Reaktion von 1 mit PCl_5 als auch mit $SeCl_4$ können rote Kristalle der Zusammensetzung $Cl_2N_2SSe_2$ isoliert werden. Schwingungsspektroskopische Untersuchungen deuten auf die Struktur eines chlorierten Fünfrings hin, wobei zwei Möglichkeiten offen blieben, und zwar eine dem $[ClS_3N_2]^+Cl^{-22}$ analog aufgebaute ionische Spezies $[ClSe_2N_2S]^+Cl^-$ oder eine kovalente Form $Cl_2Se_2N_2S$.

Der geringe Dampfdruck und die Unlöslichkeit in CHCl₃, CH₂Cl₂, SO₂ und POCl₃ sprechen zwar für den ionischen Aufbau, die eindeutige Entscheidung für die ionische Struktur 3-Chlor-1,3,4,2,5-thiadiselenadiazolium-chlorid (4e) wurde jedoch erst durch die Kristallstrukturanalyse (Abb. 4) erbracht.

$$1 \xrightarrow{+ \operatorname{SeCl}_{4} \quad \operatorname{CH}_{2}\operatorname{Cl}_{2}/22 \, \circ_{C}}} \left[\begin{array}{c} \operatorname{Cl}_{} & \operatorname{Se}^{-N} \\ & \operatorname{Se}^{-N} \\ & \operatorname{Se}^{-N} \end{array} \right]^{+} \operatorname{Cl}^{-} \qquad (8)$$

$$[\operatorname{Se}_2 \operatorname{N}_2 \operatorname{S}^+ \operatorname{Cl}^-]_2 + \operatorname{Cl}_2 \xrightarrow{22 \circ \operatorname{C}/\operatorname{SO}_2} 2 4 \operatorname{e}$$
(9)

Abb. 4. Molekülstruktur von 4e; ausgewählte Abstände [Å] und Winkel [°]: Se1–Se2 2.415(1), Se1–N2 1.813(3), Se1–Cl1 2.265(1), Se1–Cl2 2.825(1), Se2–N1 1.820(2), S–N1 1.545(3), S–N2 1.578(3); Cl2–Se1–Cl1 174.3(1), Cl2–Se1–N2 87.6(1), Cl1–Se1–Se2 98.8(1), N2–Se1–Se2 94.9(1), N1–Se2–Se1 91.7(1), N2–S–N1 114.8(1), S–N1–Se2 120.8(2), S–N2–Se1 117.2(2)

Da die in (8) beschriebenen Wege für die präparative Darstellung von 4e schwerwiegende Nachteile aufweisen (lange Reaktionszeiten bzw. geringe Ausbeuten), sollte die Chlorierung von $[Se_2N_2S^+C1^-]_2^{(2)}$ mit Cl₂ in SO₂ gemäß (9) in Analogie zu den in (6) angegebenen Halogenierungen ein geeigneter Weg zur Synthese von 4e sein.

IR-spektroskopisch läßt sich 4e bei der Umsetzung von $[Se_2N_2S^+Cl^-]_2$ mit Cl_2 im Molverhältnis 1:1 in SO_2 als Hauptprodukt nachweisen, aber selbst bei Verwendung eines 20proz. Cl_2 -Überschusses werden nur ca. 50% der Ausgangsverbindung umgesetzt.

Dieses unterschiedliche Verhalten gegenüber der Chlorierung von **3a** und **3c** ist vermutlich darauf zurückzuführen, daß $[Se_2N_2S^+Cl^-]_2$ im Gegensatz zu **3a** und **3c** in SO₂ unlöslich ist und somit das für einen quantitativen Reaktionsablauf notwendige Radikalkation $Se_2N_2S^{+}$ nicht vorliegen kann. Im Verlaufe von Löslichkeitsversuchen konnte auch eine Reaktion zwischen 1 und POCl₃ gemäß (10) beobachtet werden, die bei ca. 50°C innerhalb einiger Tage zu orangeroten Kristallen führt. Dieses kristalline Produkt besitzt dieselbe stöchiometrische Zusammensetzung wie **4e** und zeigt ein zu **4e** sehr ähnliches, aber in einigen Bereichen signifikant unterschiedliches IR-Spektrum. Nach Elementaranalyse, Schwingungsspektrum und Kristallstrukturanalyse ist das Produkt als 3,3-Dichlor-1,3 λ^4 ,4,2,5-thiadiselenadiazol (5) zu bezeichnen (Abb. 5).

Abb. 5. Molekülstruktur von 5; ausgewählte Abstände [Å] und Winkel [°]: Se1–Se2 2.384(2), Se1–N2 1.771(9), Se1–Cl1 2.351(3), Se1–Cl2 2.644(3), Se2–N1 1.78(1), S–N1 1.54(1), S–N2 1.584(9); Cl2–Se1–Cl1 164.9(1), Cl2–Se1–Se2 92.5(1), Cl1–Se1–N2 95.6(3), N2–Se1–Se2 94.4(3), N1–Se2–Se1 93.0(3), N2–S–N1 113.5(5), S–N1–Se2 120.3(6), S–N2–Se1 118.6(5)

Die ermittelten Se – Cl-Abstände [2.644(3), 2.351(3) Å]für 5 unterscheiden sich signifikant von denen in 4e [2.825(1), 2.265(1) Å] und lassen den Schluß zu, 5 als stärker kovalent zu interpretieren.

Die auch im Rahmen dieser Arbeit bestimmten Se–Cl-Abstände – d(Se1-Cl) = 2.211(3) Å für 4c (kovalente Bindung) und $d(Se1-Cl6, SbCl_5) = 3.285(3)$ Å in 4d (Wechselwirkung zwischen Se1 und dem benachbarten Chloratom Cl6 des Anions) – zeigen, daß 4e und 5 nicht als ausschließlich ionisch bzw. kovalent interpretiert werden sollten. Vergleichbare Modifikationen konnten Gillespie et al.¹⁰⁾ anhand des Ringsystems Cl₂SeNSNS in ein und derselben Elementarzelle beobachten. Am Beispiel unseres Ringsystems Cl₂SeNSNSe ist es jetzt gelungen, entsprechende Modifikationen 5 und 4e unabhängig voneinander zu synthetisieren und eindeutig zu chrakterisieren.

Diskussion der Reaktionsschritte der Umsetzung von 1 mit Lewissäuren

Alle bislang beschriebenen Reaktionen von 1 mit Lewissäuren führen zu dem Fünfring Se_2N_2S . Seine Bildung verläuft vermutlich über die in (11) angegebenen Zwischenstufen.

Die im ersten Reaktionsschritt IR-spektroskopisch nachgewiesene SO₂-Abspaltung verläuft vermutlich intramolekular unter Ausbildung eines SeSN₂-Vierrings. Letzterer dimerisiert zum Se₂S₂N₄-Käfig in Analogie zu der in Lösung beobachteten Umwandlung von S₂N₂ in S₄N₄^{23,24}. Im Se₂S₂N₄-Käfig ist der Se₂N₂S-Fünfring bereits vorgebildet und kann nach Abspaltung eines N₂S-Fragments in Erscheinung treten. Dieser Reaktionsweg findet vermutlich auch bei anderen Reaktionen von Chalkogen-Stickstoff-Verbindungen statt²⁵⁻²⁷. So führen die Umsetzungen von S₄N₄ mit FeCl₃²⁸ bzw. Se₄N₄ mit AsF₅⁸ unter Verlust von N₂S zu den dimeren Kationen [S₃N₂]²/₂ bzw. [Se₃N₂]²/₂⁺.

Umsetzung von 1 mit TiCl₄

Eine Stütze für den in (11) postulierten Reaktionsweg ist die Reaktion von 1 mit TiCl₄. Unter SO₂-Abspaltung entsteht hierbei nahezu quantitativ ein Feststoff der Zusammensetzung Cl₄N₂SSeTi. Die nachfolgend aufgeführten Eigenschaften dieses Feststoffes zeigen, daß nach (12) 1,3,2,4-Thiaselenadiazet-Titantetrachlorid (6) entstanden ist.

6 besitzt die gleiche orangegelbe Farbe und eine ähnliche thermische Stabilität wie $S_2N_2 \cdot \text{TiCl}_4^{-11}$ (Schmp. 250°C für **6**, >230°C für $S_2N_2 \cdot \text{TiCl}_4$). Auch schwingungsspektroskopisch sind **6** und $S_2N_2 \cdot \text{TiCl}_4$ zumindest im Bereich unterhalb 500 cm⁻¹ vergleichbar. Massenspektroskopisch sind für **6** bei ca. 150°C nur die Lewissäure und das Kation $Se_2N_2S^+$ mit entsprechender Fragmentierung nachweisbar. Das Auftreten von $Se_2N_2S^+$ kann nur durch thermische Zersetzung von **6** erklärt werden. Da **6**, genau wie $S_2N_2 \cdot \text{TiCl}_4$, weder gelöst noch sublimiert werden kann, gelingt es nicht, Einkristalle zu erhalten. Durch Röntgenpulveranalysen läßt sich zeigen, daß $S_2N_2 \cdot \text{TiCl}_4$ mit **6** wahrscheinlich isostrukturell ist.

Beide Komplexe liefern nicht nur sehr ähnliche Reflexmuster, sondern die 2- Θ -Werte sind für 6 im Vergleich zu $S_2N_2 \cdot \text{TiCl}_4$ systematisch zu kleineren Winkeln verschoben. Wie für $S_2N_2 \cdot \text{TiCl}_4^{29}$, ist auch für 6 aufgrund der gefun-

denen Eigenschaften eine polymere Struktur gemäß (13) wahrscheinlich.

1,3,4,2,5-Thiadiselenadiazoldiium-bis(hexafluoroarsenat) (7)

Bei der Umsetzung von 1 mit AsF₅ im Verhältnis 1:1 wird als einziges Produkt 3a analysenrein isoliert. Wählt man dagegen die dreifache Menge AsF5, so ist allein optisch ein anderer Reaktionsverlauf erkennbar. Die Farbe der anfänglich tiefroten Lösung schlägt über orange nach gelb um. Nach vier Tagen kann aus dieser Lösung das Dikation 7 in farblosen Kristallen (Schmp. 197°C) erhalten werden. Es ist im Vergleich zu $S_3N_2^{2+}$, welches in SO₂ spontan zerfällt³⁰, unerwartet stabil. In SO₂ ist 7 gut löslich und kann wochenlang bei 22°C aufbewahrt werden, ohne daß merkliche Zersetzung eintritt. Als für 7 besonders charakteristisch hat sich die extrem Tieffeld-verschobene chemische Verschiebung im ⁷⁷Se-NMR-Spektrum ($\delta = 2435$ s) erwiesen. Die Existenz des sehr luftempfindlichen 7 konnte zusätzlich durch zwei weitere Synthesewege bestätigt werden. Es ist durch Reaktion von 4e mit AgAsF₆ zugänglich und entsteht auch bei der Oxidation von 3a mit überschüssigem AsF5 gemäß (14).

$$4e \xrightarrow{+2 \operatorname{AgAsF_6}}_{-2 \operatorname{AgCl}} \xrightarrow{\left[\begin{array}{c} Se \xrightarrow{N} \\ 1 & 3 \\ Se \xrightarrow{4} & 5 \\ Se \xrightarrow{4} & 5 \\ N \end{array}\right]}^{2+} (\operatorname{AsF_6})_2 \longleftrightarrow 3a + \operatorname{AsF_5}$$
(14)

Die Bildung von 7 ist kürzlich in der Literatur erwähnt worden¹⁹, jedoch fehlen außer einer ⁷⁷Se-NMR-Verschiebung⁸, die mit unseren Beobachtungen gut übereinstimmt, bislang sämtliche physikalischen Daten.

Bei dem Versuch, TiCl₄ in **6** durch AsF₅ zu ersetzen, konnten hellgelbe Kristalle der Zusammensetzung SeS₃N₅AsF₆ (Schmp. 161–163 °C) erhalten werden. IR- und ¹⁹F-NMRspektroskopische Untersuchungen weisen auf die in (15) angegebene ionische Verbindung [SeS₃N₅]⁺[AsF₆]⁻ hin, für welche die beiden Konstitutionsisomeren **8a** und **8b** möglich sind.

Eine genauere Betrachtung des IR-spektrums ermöglicht es 8a den Vorzug zu geben, da Schwingungen einer Selendiimin-Gruppierung nicht zu beobachten sind (s. spektroskopische Untersuchungen). Den Beweis für die Brückenkopfposition des Se-Atoms in 8 wurde durch eine Kristallstrukturanalyse erbracht. In Abb. 6 sind die Ergebnisse zusammengefaßt. Die Kristallstruktur zeichnet sich durch doppelte Besetzung der allgemeinen Positionen der asymmetrischen Einheit der Elementarzelle aus. Bei vergleichbaren, wenngleich leicht verzerrten Geometrien beider unabhängigen As F_6 -Anionen werden in den Gerüsten der Kationen signifikant unterschiedliche, jeweils entgegengesetzte Se – N Bindungsabstände beobachtet.

Abb. 6. Molekülstruktur von 8, Darstellung des Moleküls A; ausgewählte Abstände [Å] und Winkel [*], Angabe der Werte für das Molekül B in Klammern: Se1-N1 1.75(2) (1.95(2)), Se1-N4 1.85(2) (1.81(2)), Se1-N5 1.90(2) (1.70(1)), S1-N1 1.54(2) (1.49(2)), S1-N2 1.59(2) (1.51(2)), S2-N2 1.73(2) (1.76(2)), S2-N3 1.78(2) (1.69(2)), S2-N5 1.47(2) (1.68(2)), S3-N3 1.52(2) (1.54(2)), S3-N4 1.50(2) (1.54(2)); N4-Se1-N1 100.3(7) (97.5(7)), N2-S1-N1 118.7(9) (124(1)), N3-S2-N2 96.9(8) (92.5(8)), N4-S3-N3 124(1) (118.4(9)), S2-N5-Se1 122(1), (115.9(8))

Spektroskopische Untersuchungen

Neben den intensiven F_{1u} -Schwingungen der oktaedrischen Anionen zeigen die IR-Spektren der Substanzen 3a-cjeweils drei für den Ring charakteristische Banden bei 996 $\pm 2,950 \pm 3$ und 489 ± 3 cm⁻¹, die man symmetrischen und antisymmetrischen Valenzschwingungen sowie der Deformationsschwingung der N=S=N-Gruppierung zuordnen kann. Hinzu kommen Absorptionsbanden um 600 cm⁻¹, welche durch Se-N-Valenzschwingungen verursacht werden. Eine Zuordnung der Banden von 3a-csowie 7 ist in Tab. 1 angegeben. Auch 3d liefert ein vergleichbares Spektrum, jedoch erscheint dies durch die Anwesenheit des tetraedrischen BF₄⁻-Anions komplexer.

Tab. 1. IR-Daten von 3a-c und 7, Schwingungsbanden in cm⁻¹

3a	3b	3c	7	Versuchs- weise Zuordnung
996 m 952 s	998 m 950 s	995 m 947 s	974 m	V _(NSN)
712 vs		690s		
689 s	670 vs	615 vs, br	700 vs, br	$v_3(MF_6)^{a)}$
667 s	636 s		646 sh	
619 s	618 s	615 vs, br	621 m	V _(SeN)
583 m			581 m	
544 m	542 m	557 sh 507 s	560 m	
492 w	492 w	487 m	500 m	$\delta_{(NSN)}$
393 vs	287 vs	240 vs	388 vs	$v_4(MF_6)^{a}$
370 w				
353 m	358 m	357 m	338 m	
			312 w	V(SeSe)
290 w	287 vs	288 w	278 w	()
			217 m	

^{a)} M = As, Sb, Nb.

Die schwingungsspektroskopische Charakterisierung von $3\mathbf{a} - \mathbf{d}$ stimmt sehr gut mit den für $[Se_2N_2S^+X^-]_2$ (X = Cl oder Br)²⁾ publizierten IR-Spektren überein. Die großen Unterschiede zu den IR-Spektren von $3\mathbf{a}$ und $3\mathbf{b}^{3)}$ lassen nur den Schluß zu, daß beide Verbindungen bisher nicht analysenrein vorlagen.

Die IR-Spektren von $4\mathbf{a} - \mathbf{e}$ zeigen – abgesehen von vSe-Cl = 340 und vSe-Br = 277 cm⁻¹ die erwartete Ähnlichkeit zu den Spektren von $3\mathbf{a} - \mathbf{d}$. Eine signifikante Unterscheidungsmöglichkeit bietet jedoch der Energieunterschied zwischen v_{as} und v_s der N=S=N-Gruppierung; für $4\mathbf{a} - \mathbf{e}$ sind die durchschnittlichen Werte für v_{as} (N=S=N) 1020 ± 5 und v_s (N=S=N) 922 ± 7 cm⁻¹, für $3\mathbf{a} - \mathbf{d}$ 996 ± 2 und 950 ± 3 cm⁻¹. Die hohe Lagekonstanz dieser Absorptionen bietet ein gutes Kriterium, zwischen $3\mathbf{a}, \mathbf{b}$ und $4\mathbf{a}, \mathbf{b}$ zu unterscheiden.

Auch für Schwefel-Stickstoff-Verbindungen findet man ein analoges Schwingungsverhalten: für $[S_3N_2^+Cl^-]_2$ sind v_{as} und v_s der Schwefeldiimingruppe bei 964 und 944³¹⁾ und für $[S_3N_2Cl^+]Cl^-$ bei 1015 und 940 cm^{-1 32)} zu finden.

Aufgrund der hier ermittelten spektroskopischen Ergebnisse für 3a, b und 4a, b muß für 5 die Ringstruktur Cl-SeNSNSe postuliert werden. Das IR-Spektrum des Produkts der Umsetzung von 2a mit SCl₂ [Gl. (4)] ist mit den Spektren von 3a-d vergleichbar. Jedoch tritt neben v(N=S=N) (969 und 938 cm⁻¹) und v(Se-N)(≈ 600 cm⁻¹) eine weitere intensive Bande bei 708 cm⁻¹ auf, die im Bereich von S-N-Streckschwingungen liegt. Es ist daher naheliegend, für die Konstitutionen dieses Produktes das Ringsystem [SeNSNS]₂²⁺ zu postulieren.

Das für 8 erhaltene IR-Spektrum ist im Vergleich zu den bislang diskutierten wesentlich komplexer und erlaubt keine eindeutige Bandenzuordnung, jedoch ist es im Hinblick auf Lage, Intensität und Anzahl der Schwingungsbanden vergleichbar mit dem für $S_4N_5^+AsF_6^-$ beschriebenen³³⁾ und erlaubt daher, einen dem $S_4N_5^+$ analogen Bicyclus **8a** bzw. **8b** zu postulieren. Da außerdem in dem Bereich, in welchem erwartungsgemäß Schwingungen einer N-Se-N-Gruppiemit Doppelbindungsanteilen auftreten rung (um 800 cm^{-1 17}), intensive Banden fehlen, ist die Annahme einer Bicyclusstruktur für 8a allein aufgrund des IR-Spektrums vertretbar.

Aufgrund der schlechten Löslichkeitseigenschaften der hier beschriebenen SeSN-Heterocyclen war es nur im Falle von 7 sowie 4a-d möglich, ⁷⁷Se-NMR-Messungen durchzuführen. Sie bestätigen, daß in 4a-d zwei nicht äquivalente Selenatome vorliegen. Die gefundenen δ -Werte liegen um 1570 bzw. 1590. Auch für das analoge Ringsystem Cl₂SeNSNS¹⁰ ist mit $\delta = 1608$ ein ähnlicher Wert gefunden worden.

Im Vergleich zu 4a – d zeigt 7 einen erwarteten Tieffeldshift ($\delta = 2435$). Zugleich stellt dieser Wert die bislang höchste Tieffeldverschiebung in der ⁷⁷Se-NMR-Spektroskopie dar. Auch Passmore et al.⁸⁾ erhielten mit $\delta = 2434$ für Se₃N₂²⁺(AsF₆)₂ und 2412 für 7 ähnliche Ergebnisse.

Massenspektroskopische Untersuchungen an den hier vorgestellten SeSN-Heterocyclen führen nur im Falle 3a-dzu eindeutigen Ergebnissen. Bei Temperaturen >100°C beobachtet man das Radikalkation $Se_2N_2S^+$ mit entsprechendem Fragmentierungsmuster (SN⁺, SeN⁺, Se⁺, SeSN⁺, Se₂⁺ und Se₂N⁺). Auch Wolmershäuser et al. hatten massenspektroskopisch für die Verbindungen $[Se_2N_2S^+X^-]_2$ (X = Cl oder Br) erstmals das Radikalion $Se_2N_2S^+$. nachgewiesen²). Für die übrigen Verbindungen beobachtet man infolge des niedrigen Dampfdruckes und der hierdurch notwendigen Einlaßtemperaturen ($\approx 100-150^{\circ}C$), neben dem eigentlichen Fragmentierungsmuster zunehmend auch thermische Reaktionen. Somit können anhand dieser Massenspektren keine eindeutigen Aussagen gemacht werden.

Experimenteller Teil

Luft- und feuchtigkeitsempfindliche Substanzen mit hinreichendem Dampfdruck werden in einer Standard-Vakuum-Apparatur mit Young-Ventilen, Feststoffe in einer Glove-Box (Firma M. Braun GmbH, München) gehandhabt. Als Incrtgas diente über Sicapent getrocknetes Argon (4N). Glasgeräte wurden vor Gebrauch im Argonstrom bzw. i. Vak. (<10⁻³ mbar) getrocknet. Lösemittel wurden nach den entsprechenden Literaturmethoden getrocknet, anschlie-Bend in Glasgefäße mit Young-Ventilen destilliert und über Molekülsieb bzw. Sicapent gelagert. – IR: RbBr- bzw. KBr-Preßlinge, Flüssigkeiten als Kapillarfilm und gasförmige Substanzen in einer 10-cm-Gasküvette mit KBr- bzw. RbBr-Scheiben, Geräte Bruker IFS 85 FT (4000-400 cm⁻¹), Perkin Elmer 325 und Bruker IFS 66 FT ($400 - 200 \text{ cm}^{-1}$). Sehr schwache Banden und Schultern werden nicht aufgeführt. - Ra: Feststoffe als Pulver in abgeschmolzenen Kapillaren, Gerät: Coderg T 800 (Ar-Linie 647.1 nm). -ESR: Bruker ESP 300. - MS: Varian MAT-CH 5 bzw. Varian MAT-CH 7, 70 eV, Emission 100 µA. - Magnetische Messungen: elektronische Faraday-Mikrowaage 7085011 Satorius, Bruker Magnet B-E 10 C8, kontinuierlich regelbare Temperiereinheit B-VT 1000, Messung zwischen 98 und 293 K in 5-K-Abständen. - NMR: Bruker WM 250 PFT. Externe Standards ¹⁹F: CFCl₃; ¹H: Si(CH₃)₄; ⁷⁷Se: Se(CH₃)₂; ³¹P: H₃PO₄. Negatives Vorzeichen bedeutet Hochfeldverschiebung.

Die Darstellung der Ausgangsverbindungen $S_2N_2 \cdot TiCl_4^{(11)}$ und $[Se_2N_2S^+Cl^-]_2^{(2)}$ erfolgte nach Literaturvorschriften.

Röntgenstrukturanalysen von 1, 4c, d, e, 5 und 8: Atomkoordinaten, thermische Parameter und Angaben zur Methodik enthalten die Tabellen 2-7.

Tab. 2. Atomkoordinaten und thermische Parameter $[Å^2]$ von 1 $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \overline{a}_i \cdot \overline{a}_j$

Atom	x	у	Z	U _{eq}
Se	0.0000	0.1218(2)	0.2500	0.035
S	0.1558(1)	0.3293(3)	0.1247(2)	0.043
0	0.1771(3)	0.021(1)	0.1101(8)	0.063
N	0.0734(4)	0.404(1)	0.1913(7)	0.042

Kristallstrukturanalyse³⁴⁾ von 1 bei 20°C: $N_2O_2S_2Se$, Kristallgröße 0.11x0.35x0.43 mm, monoklin, Raumgruppe C2/c (Nr.15), a = 16.286(1), b = 4.496(1), c = 7.258(1) Å, β = 96.64(1)°, V = 527.9 Å³, Z = 4, ρ_{ber} = 2.56 g·cm⁻³, μ (Mo-K α) = 76.9 cm⁻¹, λ = 0.71069 Å, Enraf-Nonius CAD4 Diffraktometer, Me8-methode ω – 20, [(sin θ)/ λ]_{max} 0.70 Å⁻¹, 3143 gemessene Reflexe [±h±k+1], gemittelt zu 761, davon 659 beobachtet [I > 2 σ (I)], Strukturlösung durch direkte Methode, analytische Absorptionskor-rektur, 33 verfeinerte Parameter, R = 0.062, R_w = 0.061 [w = 1/ σ^2 (Fo)], Restelektronendichte = 2.2 e·Å⁻³ um Se.

Tab.	3.	Atomkoordinaten und thermische Parameter [Å ²] von 4	lc
		$\mathbf{U}_{eq} = 1/3 \sum_{i} \sum_{j} \mathbf{U}_{ij} \mathbf{a}_{i}^{*} \mathbf{a}_{j}^{*} \mathbf{\overline{a}}_{i} \mathbf{\overline{a}}_{j}$	

Atom	x	у	Z	U _{eq}
Se1	0.3163(1)	0.9030(1)	0.6378(1)	0.032
Se2	0.2206(1)	0.6752(1)	0.5232(1)	0.039
S	0.5018(3)	0.7287(4)	0.5497(2)	0.040
N 1	0.3766(9)	0.622(1)	0.5041(8)	0.047
N2	0.4719(9)	0.887(1)	0.6116(8)	0.041
Cl	0.3631(3)	0.8057(4)	0.8146(2)	0.060
Nb	0.0879(1)	0.1905(1)	0.3219(1)	0.029
F1	0.2156(7)	0.237(1)	0.2513(7)	0.082
F2	0.2213(7)	0.096(1)	0.4449(6)	0.075
F3	0.117(1)	0.386(1)	0.3974(9)	0.109
F4	-0.0474(7)	0.279(1)	0.1984(7)	0.084
F5	0.046(1)	-0.008(1)	0.2506(7)	0.092
F6	-0.0398(7)	0.149(1)	0.3998(6)	0.068

Kristallstrukturanalyse³⁴⁾ von 4c bei 20°C: CIN_2SSe_2 NbF₆, Kristallgröße 0.21x0.27x0.30 mm, monoklin, Raumgruppe $P2_1/n$ (Nr.14), a = 10.450(1), b = 8.303(1), c = 12.213(1) Å, $\beta = 108.49(1)^\circ$, V = 1005.1 Å³, Z = 4, $\rho_{\text{ber}} = 3.04$ g cm⁻³, $\mu(\text{Mo-K}\alpha) = 88.3$ cm⁻¹, $\lambda = 0.71069$ Å, Enraf-Nonius CAD4 Diffraktometer, Meßmethode $\omega - 2\theta$, $[(\sin\theta)/\lambda]_{\text{max}} 0.70$ Å⁻¹, 3090 gemessene Reflexe [$\pm h + k + l$], gemittelt zu 2894, davon 2007 beobachtet [I > 2 σ (I)], Strukturlösung durch direkte Methode, analytische Absorptionskorrektur, 118 verfeinerte Parameter, R = 0.058, $R_{\text{sy}} = 0.065$ [w = $1/\sigma^2$ (Fo)], Restelektronendichte = 1.12 e Å⁻³.

Tab. 4. Atomkoordinaten und thermische Parameter [Å²] von 4d $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \bar{a}_{i} \cdot \bar{a}_{j}$

Atom	x	У	Z	U _{eq}
Se1	0.4246(2)	0.4238(1)	0.2366(1)	0.061
Se2	0.6436(2)	0.4112(1)	0.1184(1)	0.085
Se2X	0.624(2)	0.4558(8)	0.345(1)	0.063
S	0.8045(5)	0.4966(3)	0.2990(3)	0.067
SX	0.765(3)	0.466(2)	0.149(2)	0.087
N1 ^{a)}	0.822(2)	0.479(1)	0.191(1)	0.067
N2 ^{a)}	0.668(2)	0.430(1)	0.330(1)	0.031
C11	0.2787(4)	0.5562(2)	0.2070(2)	0.071
Sb	0.1586(1)	0.2718(1)	0.4791(1)	0.038
C12	0.4299(4)	0.2244(2)	0.4051(2)	0.068
Cl3	0.1024(5)	0.1154(2)	0.5205(2)	0.085
Cl4	-0.0264(4)	0.2552(2)	0.3229(2)	0.074
C15	-0.1095(4)	0.3183(2)	0.5540(2)	0.076
C16	0.2166(4)	0.4292(2)	0.4418(2)	0.061
C17	0.3561(4)	0.2898(2)	0.6332(2)	0.059

a) Lokalisierung der fehlgeordneten N-Atome war nicht möglich.

Kristallstrukturanalyse³⁴⁾ von 4d bei 20°C: ClN₂SSe₂ · SbCl₆, Kristallgröße 0.38x0.38x0.50 mm, monoklin, Raumgruppe $P_{1,1/C}$ (Nr.14), a = 7.079(1), b = 14.444(3), c = 13.484(2) Å, β = 96.78(1)°, V = 1369.1 Å³, Z = 4, ρ_{ber} = 2.85 g·cm⁻³, μ (Mo-K α) = 87.8 cm⁻¹, λ = 0.71069 Å, Enraf-Nonius CAD4 Diffraktometer, Meßmethode ω – 20, [(sin θ)/ λ]_{max} 0.65 Å⁻¹, 3351 gemessene Reflexe [±*h*+*k*+*l*], gemittelt zu 3097, davon 2259 beobachtet [I > 2 σ (I)], Strukturlösung durch direkte Methode, analytische Absorptionskorrektur, 136 verfeinerte Parameter, R = 0.051, R_{w} = 0.056 [w = 1/ σ ²(Fo)], Restelektronendichte = 1.0 e·Å⁻³. Fehlordnung im Heterocyclus (80:20).

Tab. 5. Atomkoordinaten und thermische Parameter [Å²] von 4e $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \overline{a}_{j} \cdot \overline{a}_{j}$

	. <u>.</u>			
Atom	X	У	Z	Ueq
Se1	0.0797(1)	0.0944(1)	0.0859(1)	0.011
Se2	0.1936(1)	0.2025(1)	0.0066(1)	0.013
S	0.0614(1)	0.1201(1)	-0.2645(1)	0.016
N1	0.1526(3)	0.1855(1)	~ 0.2101 (3)	0.016
N2	0.0075(3)	0.0719(1)	-0.1193(3)	0.015
CII	0.3306(1)	0.0345(1)	0.0707(1)	0.018
Cl2	-0.2449(1)	0.1598(1)	0.1281(1)	0.016

Kristallstrukturanalyse³⁴⁾ von 4e bei -173°C: Cl₂N₂SSe₂, Kristallgröße 0.04x0.25x0.33 mm, orthorhombisch, Raumgruppe *Pbca* (Nr.61), a = 7.644(1), b = 19.970(5), c = 8.123(1) Å, V = 1239.9 Å³, Z = 8, $\rho_{\rm ber}$ = 3.09 gcm⁻³, μ (Mo-K α) = 128.8 cm⁻¹, λ = 0.71069 Å, Enraf-Nonius CAD4 Diffraktometer, Meßmethode $\omega - 2\theta$, $[(\sin\theta)/\lambda]_{\rm max}$ 0.65 Å⁻¹, 5819 gemessene Reflexe [±h±k+l], gemittelt zu 1408, davon 1208 beobachtet [I > 2 σ (I)], Strukturlösung durch Schweratom-Methode, analytische Absorptionskorrektur, 64 verfeinerte Parameter, R = 0.023, $R_{\rm w} = 0.022$ [w = 1/ σ ²(Fo)], Restelektronendichte = 0.85 eÅ⁻³.

Tab. 6. Atomkoordinaten und thermische Parameter [Å²] von 5 $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \overline{a}_{i} \cdot \overline{a}_{j}$

Atom	x	У	Z	U _{eq}
Se1	0.3597(2)	0.8965(1)	0.5520(1)	0.024
Se2	0.2135(2)	0.9273(1)	0.3534(1)	0.035
S	0.2872(5)	0.7590(2)	0.3922(3)	0.037
N1	0.200(1)	0.8245(6)	0.3072(8)	0.038
N2	0.377(1)	0.7927(5)	0.5196(9)	0.031
C11	0.0935(4)	0.8866(2)	0.6801(3)	0.043
Cl2	0.6918(4)	0.9290(2)	0.4602(3)	0.035

Kristallstrukturanalyse³⁴⁾ von 5 bei 20°C: Cl₂N₂SSe₂, Kristallgröße 0.10x0.26x0.22 mm, orthorhombisch, Raumgruppe *Pbca* (Nr.61), a = 7.237(1), b = 16.692(4), c = 10.436(2) Å, V = 1260.6 Å³, Z = 8, ρ_{ber} = 3.04 g·cm⁻³, μ (Mo-K α) = 126.7 cm⁻¹, λ = 0.71069 Å, Enraf-Nonius CAD4 Diffraktometer, Meßmethode ω – 20, $[(\sin\theta)/\lambda]_{max}$ 0.65 Å⁻¹, 3389 gemessene Reflexe [±h+k+l], gemittelt zu 1436, davon 1007 beobachtet [I > 2 σ (I)], Strukturlösung durch Schweratom-Methode, analytische Absorptionskorrektur, 64 verfeinerte Parameter, R = 0.051, R_w = 0.058 [w = 1/ σ^2 (Fo)], Restelektronendichte = 1.6 e·Å⁻³ um Se-Atome.

Bis(sulfinylamino)selen (1): Zu einer Lösung von 1.78 g (7.8 mmol) Se₂Cl₂ in 20-30 ml CH₂Cl₂ (100-ml-Carius-Rohr mit Young-Ventil) werden 2.20 g (16.2 mmol) (CH₃)₃SiNSO kondensiert. Das Gemisch wird 24 h bei 22°C gerührt. Nach Abtrennen von CH₂Cl₂ und (CH₃)₃SiCl wird der Rückstand bei 22°C/10⁻³ Torr sublimiert. 1 wird in gelben Kristallen isoliert, welche sich in CH₂Cl₂, CHCl₃ oder Aceton gut, in Benzol, Toluol oder SO₂ mäßig und in CCl₄ oder CFCl₃ schlecht lösen. An Luft erfolgt spontane Zersetzung. Ausb. 1.10 g (69%), Schmp. 122-123°C. - ⁷⁷Se-NMR (C₆D₆/CHCl₃ 1:1): δ = 1394 (s). - IR: $\tilde{\nu}$ = 1189 cm⁻¹ (vs), 1033 (m), 626 (s), 463 (m). - MS: *m/z* (%) = 204 (18) [M⁺], 158 (4) [O₂SNSe⁺, S₂NSe⁺], 142 (20) [OSNSe⁺], 126 (4) [SNSe⁺], 94 (68) [SeN⁺], 80 (18) [Se⁺], 48 (42) [SO⁺], 46 (100) [SN⁺], 32 (17) [S⁺]. N₂O₂S₂Se (203.1) Ber. N 13.79 S 31.57 Gef. N 14.0 S 31.5

Bis[bis(trimethylsilyl)amino]selan (2a) und -diselan (2b): In einem 500-ml-Kolben, versehen mit Tropftrichter und CaCl₂-Trok-

kenrohr, werden 10.32 g (61.7 mmol) LiN[Si(CH₃)₃]₂ in ca. 150 ml Diethylether vorgelegt. Zu dieser Lösung läßt man innerhalb von ca. 30 min 7.02 g (30.7 mmol) Se₂Cl₂ tropfen. Die anfänglich okkerfarbene Suspension färbt sich gegen Ende der Se₂Cl₂-Zugabe braun. Nach 24stdg. Rühren bei 22 °C werden LiCl und Selen abfiltriert. Aus der orangefarbenen Lösung wird nach Entfernen des Ethers ein orangerotes Öl erhalten, aus welchem durch Sublimation (ca. 7 d) bei 30-40 °C/10⁻³ Torr **2a** isoliert wird. Zur weiteren Reinigung wird **2a** einmal aus CH₃OH umkristallisiert. Es fällt in farblosen Kristallen aus. An Luft zersetzt es sich langsam; in Benzol, Diethylether, CCl₄ und CH₂Cl₂ ist es gut löslich in CH₃OH nur mäßig. Das nach der Sublimation verbleibende Öl wird in ein 30ml-Carius-Rohr mit Young-Ventil übergeführt. Im dynamischen Vakuum (10⁻³-10⁻⁴ Torr) bei 60 °C (14 d) kondensiert **2b** in eine mit fl. Stickstoff gekühlte Falle. Das gelb gefärbte Öl ist analysen-

Tab. 7. Atomkoordinaten und thermische Parameter [Å²] von 8 $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \bar{a}_i \cdot \bar{a}_j$

Atom	x	у	Z	U _{eq}
Se1	0.8657(2)	0.6552(3)	0.2721(2)	0.051
Se2	0,1227(2)	-0.3415(3)	0.9133(2)	0.044
S1	0.6990(5)	0.3486(9)	0.2061(5)	0.049
S2	0.7627(4)	0.4131(6)	0.4321(3)	0.022
S 3	0.6895(5)	0.8185(8)	0.3961(5)	0.050
S21	0.2904(5)	-0.6625(8)	0.9791(4)	0.041
S22	0.2274(4)	-0.5872(6)	0.7650(4)	0.026
S23	0.3084(5)	-0.1817(7)	0.7994(4)	0.040
N1	0.779(1)	0.520(2)	0.179(1)	0.038
N2	0.689(1)	0.296(2)	0.326(1)	0.042
N3	0.666(2)	0.614(2)	0.444(1)	0.051
N4	0.765(1)	0.850(2)	0.310(1)	0.043
N5	0.867(1)	0.491(3)	0.393(1)	0.045
N21	0.218(1)	-0.498(3)	1.015(1)	0.044
N22	0.321(2)	-0.683(2)	0.867(1)	0.044
N23	0.313(2)	-0.389(2)	0.746(1)	0.044
N24	0.227(1)	-0.154(2)	0.886(1)	0.037
N25	0.107(1)	-0.503(2)	0.810(1)	0.026
As1	0.9951(6)	1.0719(2)	0.0935(5)	0.036
As2	0.4972(5)	0.1465(2)	0.5948(6)	0.032
F1	0.990(3)	1.329(1)	0.107(2)	0.067
F2	0.971(3)	0.823(2)	0.094(3)	0.086
F3	1.138(2)	1.103(4)	0.125(2)	0.075
F4	0.858(2)	1.027(5)	0.092(2)	0.155
F5	1.021(2)	1.073(4)	-0.027(2)	0.073
F6	1.001(2)	1.069(4)	0.233(2)	0.075
F21	0.466(2)	-0.009(4)	0.491(2)	0.085
F22	0.526(2)	0.304(3)	0.697(2)	0.072
F23	0.480(2)	0.353(3)	0.514(2)	0.089
F24	0.513(2)	-0.054(3)	0.678(2)	0.091
F25	0.632(2)	0.165(4)	0.575(2)	0.057
F26	0.352(2)	0.132(4)	0.616(2)	0.059

Kristallstrukturanalyse³⁴⁾ von 8 bei 20°C: N₅S₃Se · AsF₆, Kristallgröße 0.15x0.32x0.33 mm, monoklin, Raumgruppe *Pc* (Nr.7), a = 11.862(1), b = 6.636(1), c = 12.801(2) Å, β = 95.27(1)°, V = 1003.4 Å³, Z = 4, ρ_{bef} = 2.87 g·cm⁻³, μ (Mo-K α) = 76.4 cm⁻¹, λ = 0.71069 Å, Enraf-Nonius CAD4 Diffraktometer, Meßmethode ω – 20, [(sin θ)/ λ]_{max} 0.65 Å⁻¹, 4995 gemessene Reflexe [±*h*+*k*+*l*], gemittelt zu 2408, davon 1897 beobachtet [I > 2 σ (I)], Strukturlösung durch direkte Methode, empirische Absorptionskorrektur, 238 verfeinerte Parameter, *R* = 0.065, *R*_w = 0.059 [w = 1/ σ^2 (Fo)], Restelektronendichte = 1.9 e·Å⁻³, zwei unabhängige Moleküle in der asymmetrischen Einheit. rein. An Luft zersetzt es sich langsam und ist in Benzol, CCl_4 sowie Diethylether gut löslich.

2a: Ausb. 1.90 g (15%), Schmp. $68-69^{\circ}C. - {}^{1}H-NMR (C_6D_6)$: $\delta = 0.33$ (s, 36H, CH₃). $- {}^{77}Se-NMR (C_6D_6)$: $\delta = 1130$ (s). - IR: $\tilde{v} = 2955 \text{ cm}^{-1}$ (m), 2897 (m), 1262 (s), 1247 (s), 911 (vs), 887 (m), 845 (vs), 778 (s), 758 (m), 701 (m), 668 (s), 636 (w), 618 (m), 424 (m). - MS: m/z (%) = 400 (37) [M⁺], 297 (10) [C₇H₂₁Si₃N₂Se⁺], 275 (24) [C₉H₂₇SiN₂⁺], 239 (23) [C₅H₁₅Si₂N₂Se⁺], 224 (12) [C₄H₁₂Si₂N₂Se⁺], 218 (34) [C₈H₂₄Si₃N⁺], 210 (7) [C₄H₁₂Si₂NSe⁺], 167 (9) [C₃H₉SiNSe⁺], 146 (10) [C₆H₁₈Si₂⁺], 130 (100) [C₄H₁₂Si₂N⁺], 100 (17) [C₂H₆Si₂N⁺], 86 (9) [C₂H₆Si₂⁺], 73 (69) [C₃H₉Si⁺], 59 (16) [C₂H₇Si⁺], 45 (12) [CH₅Si⁺].

 $C_{12}H_{36}N_2SeSi_4$ (399.7) Ber. C 36.06 H 9.08 N 7.01 Gef. C 35.4 H 9.2 N 7.4

2b: Ausb. 3.10 g (21%), Schmp. -5 bis $-7^{\circ}C. - {}^{1}H-NMR$ (C₆D₆): $\delta = 0.28$ (s, 36H, CH₃). $- {}^{77}Se-NMR$ (C₆D₆): $\delta = 1029$ (s). - IR: $\tilde{v} = 2954$ cm⁻¹ (m), 2897 (w), 1261 (m), 1249 (vs), 916 (vs), 874 (m), 842 (vs), 822 (s), 780 (m), 756 (m), 715 (m), 676 (m), 619 (w). - MS: m/z (%) = 480 (22) [M⁺], 240 (51) [C₆H₁₈Si₂NSe⁺], 225 (16) [C₅H₁₅Si₂NSe⁺], 218 (28) [C₈H₂₄Si₃N⁺], 210 (14) [C₄H₁₂Si₂NSe⁺], 146 (30) [C₆H₁₈Si₂⁺], 130 (100) [C₄H₁₂Si₂N⁺], 100 (19) [C₂H₆Si₂N⁺], 86 (14) [C₂H₆Si₂⁺], 73 (76) [C₃H₉Si⁺], 59 (18) [C₂H₇Si⁺], 45 (12) [CH₅Si⁺].

$\begin{array}{cccccccc} C_{12}H_{36}N_2Se_2Si_4 \ (478.7) & Ber. \ C \ 30.11 & H \ 7.58 \ N \ 5.85 \\ & Gef. \ C \ 30.1 & H \ 7.7 & N \ 5.9 \end{array}$

Umsetzung von **2a** mit SCl₂ zu ClN₂S₂Se: In einer Glasapparatur, bestehend aus zwei 50-ml-Carius-Rohren mit Young-Ventil, die über eine Glasfritte (D3) miteinander verbunden sind, wird eine Lösung von 0.42 g (1.05 mmol) **2a** in 10 ml CH₂Cl₂ auf -196 °C abgekühlt. Dann werden 0.23 g (2.2 mmol) SCl₂ in das Carius-Rohr kondensiert. Unter Rühren läßt man das Gemisch auf 22 °C erwärmen. Schon in der Kälte ist die Bildung eines braunen Feststoffes zu beobachten. Nach 1stdg. Rühren bei 22 °C läßt man die Lösung 24 h stehen, dekantiert und wäscht den braunen Feststoff zweimal mit ca. 10 ml CH₂Cl₂. Der Rückstand wird 24 h i. Vak. getrocknet. Ausb. 0.19 g (86%), Schmp. 181–184 °C (Zers.). – IR: $\tilde{v} = 969 \text{ cm}^{-1}$ (m), 938 (s), 708 (s), 621 (m), 606 (s). – MS: m/z (%) = 184 (28) [S₄N₄⁺], 172 (4) [SeS₂N₂⁺], 158 (4) [SeS₂N⁺], 138 (73) [S₃N₃⁺], 126 (13) [SeSN⁺], 110 (9) [S₃N⁺], 92 (68) [S₂N₂⁺], 78 (45) [S₂N⁺], 46 (100) [SN⁺], 36 (82) [HCl⁺].

Umsetzung von 2a mit Selentetrachlorid

Vorsicht! Bei dieser Umsetzung entsteht Se₄N₄, das im trockenen Zustand außerordentlich brisant ist. Selbst bei vorsichtiger Berührung mit einem harten Gegenstand kann es heftig explodieren! -In der vorstehend beschriebenen Apparatur werden in das eine Carius-Rohr 170.0 mg (0.43 mmol) 2a und in das andere 90.0 mg (0.41 mmol) fein verteiltes SeCl₄ gefüllt. Der mit 2a gefüllte Schenkel der Apparatur wird mit Stickstoff gekühlt, evakuiert, und 20 ml CH₂Cl₂ werden zu **2a** kondensiert. Bei 22°C wird die klare Lösung von 2a auf das SeCl₄ gegeben. Spontan ist eine Reaktion unter Bildung eines braunen Feststoffes zu beobachten. Die erhaltene Suspension wird 48 h mit Hilfe einer Schüttelmaschine leicht bewegt. Danach wird die orangegelb gefärbte Lösung vom braunen Feststoff dekantiert, der Rückstand mit 10 ml CH2Cl2 gewaschen und 24 h i. Vak. getrocknet. Zur Präparation eines KBr-Preßlings wird vom Feststoff (ca. 60 mg) mit einem Spatel vorsichtig ca. 1 mg Substanz entnommen und mit zuvor gemörsertem KBr vermischt. Bei dem Versuch, weitere Substanzmengen aus dem Carius-Rohr zu entnehmen, zersetzte sich das Produkt unter Feuererscheinung explosionsartig. Das von Se₄N₄ gemessene IR-Spektrum zeigte die

Banden: $\tilde{v} = 798 \text{ cm}^{-1}$ (m), 782 (s), 625 (w), 576 (vs), 555 (m), 426 (s), 419 (s). Sie stimmen mit den in der Literatur¹⁷⁾ angegebenen überein.

Bis(1,3,4,2,5-thiadiselenadiazolium)-bis(hexafluoroarsenat) (3a): In der vorstehend beschriebenen Glasapparatur wird eine Lösung von 1.16 g (5.7 mmol) 1 in ca. 15 ml SO₂ mit fl. Stickstoff abgekühlt, dann werden 0.97 g (5.7 mmol) AsF5 dazukondensiert. Während sich das Gemisch unter Rühren auf 22 °C erwärmt, verändert sich dessen Farbe nach tiefrot. Diese Lösung wird weitere 2 h bei 22°C gerührt und dann 5 d bei 22°C aufbewahrt. Nach ca. 48 h beginnt die Kristallbildung von 3a. Die rote Lösung wird nach 5 d dekantiert, die zurückbleibenden dunkelblauen Kristalle werden fünfmal mit ca. 1 ml SO₂ gewaschen und 24 h i. Vak. getrocknet. Das an Luft sich spontan zersetzende **3a** ist in CH₂Cl₂ unlöslich, in SO₂ wenig löslich, und in POCl₃ erfolgt Zersetzung. Ausb. 0.46 g (40%), Schmp. $268 - 271 \degree C$ (Zers., ab $230 \degree C$ Schwarzfärbung). – IR: \tilde{v} = 996 cm^{-1} (m), 952 (s), 712 (vs), 689 (s), 667 (s), 619 (s), 583 (m), 544 (m), 492 (w), 393 (vs), 370 (w), 353 (m), 290 (w). - Magnetische Messung: Die magnetische Suszeptibilität ist im Temperaturbereich von 98–293 K konstant. – ESR: $a_N = 3.0$ G, g = 2.01. – MS $(\approx 150^{\circ}\text{C}): m/z \ (\%) = 220 \ (33) \ [\text{Se}_2\text{SN}_2^+], 174 \ (20) \ [\text{Se}_2\text{N}^+], 160$ (21) $[Se_2^+]$, 151 (100) $[AsF_4^+]$, 132 (37) $[AsF_3^+]$, 126 (71) $[SeSN^+]$, 113 (59) $[AsF_2^+]$, 94 (34) $[AsF^+, SeN^+]$, 80 (63) $[Se^+]$, 64 (39) $[S_2^+]$, 46 (68) $[SN^+]$.

 $\begin{array}{l} As_2F_{12}N_4S_2Se_4 \ (813.8) \\ Ber. \ As \ 18.41 \ F \ 28.01 \ N \ 6.89 \ S \ 7.88 \ Se \ 38.81 \\ Gef. \ As \ 18.33 \ F \ 28.2 \ N \ 7.0 \ S \ 8.6 \ Se \ 38.94 \\ \end{array}$

Bis(1,3,4,2,5-thiadiselenadiazolium)-bis(hexafluoroantimonat) (3b): Zu einer Lösung von 0.30 g (1.5 mmol) 1 in 15 ml SO₂ werden bei – 196 °C 0.33 g (1.5 mmol) SbF₅ kondensiert. Während des Erwärmens des Gemisches auf 22°C unter Rühren färbt sich die Lösung tiefrot. Nach weiterem 2stdg. Rühren bei 22°C läßt man das Substanzgemisch 5 d bei 22°C stehen. Hierbei bilden sich sowohl ein hellgelbes Pulver (SbF₃, massenspektroskopisch identifiziert), als auch dunkelgrüne Kristalle von 3b. Die rote Lösung wird dekantiert und das verbleibende Feststoffgemisch in eine zweite bei ClN₂S₂Se beschriebene Apparatur übergeführt. Durch fünfmalige Extraktion mit jeweils 20 ml SO₂ wird 3b von SbF₃ getrennt und 24 h i. Vak. getrocknet. 3b zersetzt sich spontan an Luft, es ist in SO₂ClF unlöslich und in SO₂ wenig löslich. In POCl₃ erfolgt vollständige Zersetzung. Ausb. 0.13 g (38%), Schmp. 230°C (Zers.). -IR: $\tilde{v} = 998 \text{ cm}^{-1}$ (m), 950 (s), 670 (vs), 636 (s), 618 (s), 542 (m), 492 (w), 358 (m), 287 (vs). - MS ($\approx 100^{\circ}$ C): Neben den Anionenbruchstücken Sb⁺, SbF⁺, SbF₂⁺, SbF₃⁺ und SbF₄⁺ ist das bei 3abeschriebene Fragmentierungsmuster von Se₂N₂S zu beobachten.

$$F_{12}N_4S_2Sb_2Se_4$$
 (907.5) Ber. S 7.07 N 6.17 Gef. S 6.6 N 6.3

Bis(1,3,4,2,5-Thiadiselenadiazolium)-bis(hexafluoroniobat) (3c): In der bei ClN₂S₂Se beschriebenen Apparatur wird in dem einen Schenkel eine Lösung von 0.82 g (4.0 mmol) 1 in 15 ml SO₂ vorgelegt. In den anderen Schenkeln werden 0.76 g (4.0 mmol) NbF5 gefüllt. Bei 22°C wird die Lösung auf das NbF5 geschüttet. Hierbei wird eine spontane intensive Rotfärbung der Lösung beobachtet. Das Gemisch wird 3 h bei 22°C gerührt. Die Bildung eines braunen Pulvers setzt ca. 30 min nach Abschalten des Rührers ein. Nach 24 h bei 22°C wachsen auf dem braunen Pulver große dunkelblaue Kristalle von 3c. Nach weiteren 48 h wird die Lösung dekantiert, das Pulver-Kristall-Gemisch zweimal mit ca. 5 ml SO₂ gewaschen und 24 h i. Vak. getrocknet. Die Trennung der dunkelblauen Kristalle von dem braunen Pulver erfolgt mechanisch mit Hilfe eines Siebes. Das an Luft rasch zersetzliche 3c ist in SO₂ nur wenig löslich. Ausb. 0.50 g (59%), Schmp. 206-208 °C (Zers.). – IR: \tilde{v} = 995 cm⁻¹ (m), 947 (s), 690 (s), 615 (vs, br), 507 (s), 487 (m), 357 (m), 288 (w), 240 (s). – MS (≈ 100 °C): Neben den Anionenbruchstücken NbF⁺, NbF₂⁺, NbF₃⁺ und NbF₄⁺ ist das Fragmentierungsmuster von Se₂N₂S zu beobachten.

$F_{12}N_4Nb_2S_2Se_4 \ (849.8) \quad Ber. \ N \ 6.59 \ S \ 7.55 \quad Gef. \ N \ 6.6 \ S \ 7.4$

Bis(1,3,4,2,5-Thiadiselenadiazolium)-bis(tetrafluoroborat) (3d): Wie angegeben wird eine Lösung von 0.50 g (2.5 mmol) 1 in 10 ml SO₂ vorgelegt. Nach Kühlen mit fl. Stickstoff werden hierzu 0.17 g (2.5 mmol) BF₃ kondensiert. Man läßt auf 22 °C erwärmen und noch 1 h weiterrühren. Die erhaltene orangefarbene, klare Lösung läßt man 7 d bei 22 °C stehen. Nach 24 h färbt sich das Gemisch tiefrot, und die Bildung dunkelblauer Kristalle von 3d setzt ein. Die Lösung wird nach 7 d dekantiert, die Kristalle werden zweimal mit ca. 5 ml SO₂ gewaschen und 24 h i. Vak. getrocknet. An Luft zersetzt sich 3d spontan. In SO₂ ist es schlecht löslich. Ausb. 0.31 g (81%), Schmp. 232 °C (Zers., ab 175 °C Schwarzfärbung). – IR: $\tilde{v} =$ 1280 cm⁻¹ (w), 1121 (vs), 1061 (s), 994 (s), 947 (vs), 761 (m), 636 (m), 623 (vs), 517 (w). – MS (≈200 °C): Neben dem Anionenbruchstück BF₂⁺ ist Se₂N₂S⁺ und dessen Fragmentierungsmuster zu beobachten.

Umsetzung von 1 mit SnCl₄: In einem 50-ml-Carius-Rohr mit Young-Ventil wird eine Lösung von 0.50 g (2.5 mmol) 1 in 10 ml CH₂Cl₂ vorgelegt. Das Carius-Rohr wird auf -196 °C gekühlt, evakuiert, und 0.64 g (2.5 mmol) SnCl₄ werden einkondensiert. Das Gemisch wird 7 d bei 22 °C gerührt. Trennt man das Lösemittel und SnCl₄ durch Kondensation ab, so kann 1 quantitativ zurückgewonnen werden. Auch bei Abwesenheit von CH₂Cl₂ ist zwischen 1 und SnCl₄ nach 7 d keine Reaktion zu beobachten.

3-Chlor- (4a) und 3-Brom-1,3,4,2,5-thiadiselenadiazolium-hexafluoroarsenat (4b): In einem 30-ml-Carius-Rohr mit Young-Ventil werden eine Suspension von 100.0 mg (0.12 mmol) bzw. 265.7 mg (0.33 mmol) 3a in 5 ml SO₂ vorgelegt. Nach Kühlen auf -196° C werden 9.0 mg (0.13 mmol) Cl₂ bzw. 52.2 mg (0.33 mmol) Br₂ in das Carius-Rohr kondensiert. Unter Rühren läßt man die Reaktionsmischung auf 22°C erwärmen, wobei 3a nach 2 h vollständig verschwunden ist. Die klare orangefarbene Lösung wird zur Trockene eingedampft und der Rückstand weitere 3 h i. Vak. getrocknet. Sowohl 4a als auch 4b fallen in orangefarbenen Kristallen an. Falls erforderlich, können sie aus SO₂ umkristallisiert werden. An Luft erfolgt spontane Zersetzung.

4a: Ausb. 0.10 g (>90%), Schmp. 168 °C (Zers.). $-^{77}$ Se-NMR (CDCl₃/SO₂ 1: 1): $\delta = 1581$ (s), 1595 (s). - IR: $\tilde{v} = 1025$ cm⁻¹ (m), 922 (s), 698 (vs), 676 (s), 636 (m), 623 (s), 562 (m), 495 (w), 394 (vs), 360 (m), 340 (m), 296 (m), 219 (m). - Ra: 1022 cm⁻¹ (m), 918 (m), 693 (w), 677 (m), 637 (w), 627 (m), 575 (w), 492 (s), 389 (m), 358 (s), 337 (vs), 302 (m), 261 (m), 234 (vs). - MS ($\approx 160^{\circ}$ C): Für das Kation ist ein M⁺-Peak nicht zu beobachten. Neben den Anionenbruchstücken As⁺, AsF⁺, AsF⁺, AsF⁺, asF⁺, asCl⁺, SeCl⁺, Se⁺, Se₂Cl⁺ und Se₂Cl⁺.

AsClF₆N₂SSe₂ (442.4) Ber. Cl 8.02 N 6.33 S 7.25 Gef. Cl 7.7 N 6.8 S 7.1

4b: Ausb. 317.8 mg (99%), Schmp. 133–135 °C (Zers.). – ¹⁹F-NMR (CDCl₃/SO₂ 1:1): δ = -55.6 (s, br). – ⁷⁷Se-NMR (CDCl₃/SO₂ 1:1): δ = 1572 (s), 1580 (s). – IR: $\tilde{\nu}$ = 1022 cm⁻¹ (m), 919 (s), 698 (vs), 674 (s), 637 (w), 620 (s), 562 (w), 392 (vs), 349 (m), 289 (w), 277 (m), 220 (m).

AsBrF₆N₂SSe₂ (486.8) Ber. N 5.75 S 6.59 Gef. N 6.4 S 6.4

Umsetzung von **3a** mit Iod: Die Umsetzung von 90.6 mg (0.11 mmol) **3a** mit 30.2 mg (0.12 mmol) I₂ in 5 ml SO₂ verlief nach 5 d

bei 22°C (Rühren) erfolglos. Die Ausgangsverbindungen konnten quantitativ zurückgewonnen werden.

3-Chlor-1,3,4,2,5-thiadiselenadiazolium-hexafluoroniobat (4c): Wie angegeben werden 0.10 g (0.12 mmol) 3c mit 8.5 mg (0.12 mmol) Cl₂ umgesetzt. Das gebildete 4c ist im Hinblick auf Farbe, Löslichkeit in SO₂ und Verhalten an Luft von 4a, b nicht zu unterscheiden. Ausb. 0.10 g (>90%), Schmp. 156–158 °C (Zers.). – ⁷⁷Se-NMR (CDCl₃/SO₂ 1: 1): δ = 1575 (s), 1583 (s). – IR: \tilde{v} = 1019 cm⁻¹ (m), 927 (s), 688 (m), 627 (vs), 603 (vs), 556 (m), 533 (s), 359 (m), 330 (m), 297 (m), 249 (m), 240 (s), 218 (m). – Ra: 1019 cm⁻¹ (m), 927 (m), 688 (m), 639 (w), 622 (w), 612 (w), 554 (w), 491 (m), 363 (m), 323 (vs), 302 (m), 263 (m), 248 (s). – MS (≈100 °C): Abgesehen von den Anionenfragmenten NbF⁺, NbF⁺₂, NbF⁺₃ und NbF⁺₄ zeigt 4c ein zu 4a analoges Spektrum.

$$ClF_6N_2NbSSc_2$$
 (460.3) Ber. Cl 7.70 N 6.09 S 6.96
Gef. Cl 7.8 N 6.6 S 7.0

3-Chlor-1,3,4,2,5-thiadiselenadiazolium-hexachloroantimonat (4d): Zu einer Lösung von 2.71 g (13.4 mmol) 1 in 40 ml CH₂Cl₂ (100 ml Carius-Rohr mit Young-Vcntil) werden 2.57 g (8.6 mmol) SbCl₅ kondensiert. Unter Rühren läßt man das Gemisch auf 22°C erwärmen und rührt weitere 20 h. Die erhaltene klare, orangerote Lösung läßt man 7 d bei 22 °C stehen, wobei bereits nach ca. 30 h die Bildung orangefarbener Kristalle einsetzt. Danach wird dekantiert, dreimal mit ca. 10 ml CH₂Cl₂ gewaschen und 24 h i.Vak. getrocknet. An Luft zersetzt sich 4d innerhalb weniger Sekunden. Ein Sublimationsversuch bei 100°C/10⁻³ Torr scheiterte. Als flüchtiges Hauptprodukt der Umsetzung kann SO2 IR-spektroskopisch nachgewiesen werden. Führt man die Reaktion mit einem 1/SbCls-Verhältnis von 1:1 durch, so setzt nach 4-10 h die Bildung eines gelben Feststoffes ein, bei dem es sich um ein Produktgemisch bestehend aus 4d und weiteren nicht identifizierten Feststoffen handelt.

Die in einem 10-mm-Rohr, das abgeschmolzen wird, ⁷⁷Se-NMRspektroskopisch verfolgte Umsetzung von 160.0 mg (0.79 mmol) 1 mit 150.0 mg (0.50 mmol) SbCl₅ in einem Gemisch aus 1.5 ml CH_2Cl_2 und 1.5 ml $CDCl_3$ zeigt während 4 h ein Signal bei $\delta =$ 1418, welches mit einsetzender Kristallbildung intensitätsschwächer und breiter wird. Ein Signal für 1 ($\delta = 1398$) ist nicht zu beobachten. In CCl₄, CFCl₃, CHCl₃ ist **4d** unlöslich, in CH₂Cl₂ geringfügig, in SO₂ mäßig (100 mg in ca. 10 ml SO₂) und in POCl₃ gut löslich. Zcrsctzung tritt mit CH₃CN, (C₂H₅)₂O, (CH₃)₂CO und Toluol ein. Ausb. 2.10 g (54%), Schmp. $128 - 138 \,^{\circ}$ C (Zers.). - ⁷⁷Se-NMR $(CDCl_3/POCl_3 1:1): \delta = 1571$ (s), 1594 (s); $(SO_2): \delta = 1582$ (s), 1592 (s). - IR: $\tilde{v} = 1016 \text{ cm}^{-1}$ (m), 929 (s), 635 (m), 619 (s), 490 (w), 338 (vs, br), 292 (s), 278 (m), 225 (m). - Ra: 1015 cm⁻¹ (w), 930 (w), 620 (m), 492 (s), 331 (vs), 295 (w), 272 (w), 265 (w), 232 (m), 177 (s), 120 (s). - MS: Bis zu einer Temperatur von ca. 100 °C sind für 4d nur die Bruchstücke SbCl⁺, SbCl⁺₂ und SbCl⁺₃ zu beobachten. Erst bei ca. 150 °C sind folgende zusätzliche Bruchstücke zu erkennen: Cl⁺, SN⁺, ClN⁺, SeCl⁺, Sb⁺ und SeCl₂⁺. – Magnetische Messung: Die magnetische Suszeptibilität ist im Temperaturbereich von 98-293 K konstant.

 $\begin{array}{c} Cl_7N_2SSbSe_2 \ (587.9) \\ Ber. \ Cl \ 42.21 \ N \ 4.77 \ S \ 5.45 \ Sb \ 20.71 \ Se \ 26.86 \\ Gef. \ Cl \ 42.0 \ N \ 4.9 \ S \ 5.6 \ Sb \ 20.47 \ Se \ 26.57 \end{array}$

3-Chlor-1,3,4,2,5-thiadiselenadiazolium-chlorid (4e): Zur Synthese eignen sich folgende Reaktionen:

a) Umsetzung von 1 mit PCl_5 : Zu einer Suspension von 0.53 g (2.6 mmol) PCl_5 in 3 – 5 ml CH_2Cl_2 (50-ml-Carius-Rohr mit Young-Ventil) werden 0.52 g (2.6 mmol) 1 gegeben, und das Gemisch wird 4 h bei 22°C gerührt. Aus der so erhaltenen orangeroten Lösung kristallisieren bei 22°C nach ca. 24 h rote Kristalle von 4e aus. Der

Zeitpunkt der Kristallbildung ist abhängig von der eingesetzten Menge CH₂Cl₂. Nach 7 d wird die Lösung dekantiert, die Kristalle werden dreimal mit jeweils 10 ml CH₂Cl₂ gewaschen und 24 h i. Vak. getrocknet. An Luft zersetzte sich 4e spontan und ist in CH₂Cl₂, CHCl₃, SOCl₂, POCl₃, SO₂ und SO₂ClF unlöslich. Ausb. 0.10 g (27%), Schmp. 178–180 °C (Zers.). – IR: $\tilde{v} = 1017$ cm⁻¹ (m), 915 (s), 612 (s), 591 (m), 464 (w), 358 (m), 309 (m), 297 (m), 281 (m), 277 (w), 230 (w). – Ra: 1017 cm⁻¹ (w), 917 (m), 614 (w), 466 (m), 355 (w), 297 (vs), 267 (w), 232 (m), 134 (m), 110 (m). – MS (≈120 °C): Folgende Zersetzungsfragmente sind zu beobachten: SN⁺, ClN⁺, S⁺₂, Se⁺, SeN⁺, SeCl⁺, SeCl⁺ und Se⁺₂.

b) Umsetzung von 1 mit SeCl₄: In ein 50-ml-Carius-Rohr mit Young-Ventil werden 1.06 g (5.2 mmol) 1, 0.58 g (2.6 mmol) SeCl₄ und 13 ml CH₂Cl₂ gefüllt. Das Gemisch wird solange geschüttelt, bis 1 vollständig gelöst ist. Das Carius-Rohr mit feinverteiltem SeCl₄ und einer überstehenden gelben Lösung läßt man in der Waagerechten bei 22 °C stehen. Nach 24 h hat sich die Lösung orangerot gefärbt, und innerhalb von 6 d sind die ersten roten Kristalle von 4e gewachsen. Nach 21 d wird die Lösung dekantiert, die zurückbleibenden Kristalle, die geringfügig mit SeCl₄ verunreinigt sein können, werden dreimal mit 10 ml CH₂Cl₂ gewaschen und anschließend i. Vak. (24 h) getrocknet. Falls die SeCl₄-Verunreinigung so nicht entfernt werden kann, müssen die Kristalle in einer Argon-Box mechanisch mit Hilfe eines Siebes getrennt werden. Ausb. 0.49 g (65%).

c) Umsetzung von $[Se_2N_2S^+Cl^-]_2^{20}$ mit Chlor: Die Reaktion wird wie bei **4b** beschrieben durchgeführt. Der einzige Unterschied besteht darin, daß $[Se_2N_2S^+Cl^-]_2$ in SO₂ unlöslich ist. Eingesetzt werden 0.14 g (0.28 mmol) $[Se_2N_2S^+Cl^-]_2$ und 20.8 mg (0.29 mmol) Cl₂. Nach 24stdg. Reaktion können **4e** und die Ausgangsverbindung **IR**-spektroskopisch im ungefähren Verhältnis 1:1 nachgewiesen werden. Beide Stoffe ließen sich nicht voneinander trennen. Auch bei einem 1,5fachen Cl₂-Überschuß kann der Anteil an $[Se_2N_2S^+Cl^-]_2$ im Produkt nicht wesentlich zurückgedrängt werden.

3,3-Dichlor-1,3 λ^4 ,4,2,5-thiadiselenadiazol (5): In einem 50-ml-Carius-Rohr mit Young-Ventil wird eine Lösung von 0.52 g (2.6 mmol) 1 in 15 ml POCl3 auf 50 °C erwärmt. Nach 24 h hat sich die Lösung orangerot gefärbt, und orangerotc Kristalle von 5 haben sich gebildet. Nach 7 d wird dekantiert, die Kristalle werden dreimal mit jeweils 10 ml POCl₃ gewaschen und 24 h i. Vak. getrocknet. Falls sich nach 24 h neben 5 ein schwarzer Feststoff bildet, wird die Lösung in ein zweites Carius-Rohr dekantiert und 7 d bei 22°C aufbewahrt; danach haben sich Kristalle von 5 gebildet. An Luft zersetzt sich 5 spontan. Es ist in CH₂Cl₂, SO₂, POCl₃ und SOCl₂ unlöslich. Bei 30°C/10⁻³ Torr ist 5 ebenso wie 4e nicht sublimierbar. Ausb. 0.20 g (54%), Schmp. 166°C (Zers.). – IR: $\tilde{v} =$ 1012 cm^{-1} (m), 908 (s), 612 (s), 607 (s), 600 (m), 476 (w), 473 (w). -MS (≈ 100 °C): Mit großer Intensität sind die Zersetzungsfragmente SN⁺, Se⁺, SeCl⁺ und SeCl₂⁺ zu beobachten. Die Bruchstücke SeN⁺, SeSN⁺, SeSN⁺, Se⁺₂, Se⁺₂, Se⁺₂Cl⁺, Se₂N₂S⁺ und Se₂Cl⁺₂ treten mit einer Intensität < 5% auf.

1,3,2,4-Thiaselenadiazet-Titantetrachlorid (6): In dcr bei ClN₂S₂Se beschriebenen Apparatur wird eine Lösung von 0.83 g (4.1 mmol) 1 in 20 ml CH₂Cl₂ mit fl. Stickstoff gekühlt, und 0.77 g (4.1 mmol) TiCl₄ werden zukondensiert. Unter Rühren läßt man das Gemisch langsam auf 22°C erwärmen. Schon in der Kälte bildet sich 6 in Form eines orangegelben Niederschlags. Nach weiterem 24stdg. Rühren bei 22°C wird das Lösemittel dekantiert und der Feststoff 24 h i. Vak. getrocknet. Als flüchtiges Hauptprodukt wird IR-spektroskopisch SO₂ nachgewiesen. An Luft erfolgt innerhalb von Sekunden Zersetzung. In SO2, CHCl3, CH2Cl2, SO2ClF, SOCl2, POCl3 und Toluol ist 6 unlöslich; mit CH₃CN, CH₃OH, Aceton und Tetrahydrofuran erfolgt Zersetzung. Ausb. 1.33 g (>95%), Schmp. 250°C (Zers.). – IR: $\tilde{v} = 921 \text{ cm}^{-1}$ (s), 914 (s), 713 (s), 700 (s), 475 (w), 430 (s), 385 (vs). - Ra: 1005 cm⁻¹ (m), 922 (w), 476 (m), 425 (m), 412 (m), 394 (vs), 311 (m), 229 (w), 212 (w), 202 (w), 135 (s). - MS ($\approx 100^{\circ}$ C): m/z (%) = 220 (10) [Se₂N₂S⁺], 190 (68) $[TiCl_4^+]$, 174 (6) $[Se_2N^+]$, 153 (100) $[TiCl_3^+]$, 126 (14) $[SeSN^+]$, 118 (39) $[TiCl_2^+]$, 94 (8) $[SeN^+]$, 92 (24) $[S_2N_2^+]$, 83 (51) $[TiCl^+]$, 80 (9) [Se⁺], 48 (66) [Ti⁺], 46 (87) [SN⁺], 35 (50) [Cl⁺].

Röntgen-Pulveranalyse:			2Θ:			14	.31	14.53	16.95	
				Inter	isitä	it I/I _{ma}	x: 53	.1	83.8	63.6
24.10	25.49	27.92	29.64	30.80	40	.36		6	0-0NI	TO
57.7	76.0	45.2	83.4	100.0	44	.4	(Jur	$sesin_2$.	TIC1 ₄)
14.69	16.77	17.07	24.21	25.67 28	.34	29.84	31.02	(6::.	- C N	TCL
6 0.8	67.7	83.3	58.1	60.9 56	.6	100.0	95.8	(111)	$r S_2 N_2 $.	ПСI ₄)

Cl₄N₂SSeTi (328.7) Ber. Cl 43.14 N 8.52 S 9.75 Se 24.02 Ti 14.57 Gef. Cl 42.7 N 8.8 S 9.9 Se 23.80 Ti 13.73

1,3,4,2,5-Thiadiselenadiazoldiium-bis(hexafluoroarsenat) (7)

a) Umsetzung von 1 mit AsF_5 : Wie bereits bei ClN₂S₂Se beschrieben, werden 0.44 g (2.2 mmol) 1 mit fl. Stickstoff gekühlt und 10 ml SO₂ sowie 1.11 g (6.5 mmol) AsF₅ in das Reaktionsgefäß kondensiert. Das Gemisch wird 5 h bei 22°C gerührt. Die erhaltene Lösung bewahrt man bei 22 °C auf, wobei innerhalb von 72 h sich die Farbe von tiefrot über orange nach gelb ändert. Nach 4 d wird bis auf ca. 1 ml eingeengt. Hierbei kristallisiert 7 in farblosen Kristallen aus. Die Lösemittelreste werden dekantiert, der Feststoff wird zweimal mit wenig SO₂ gewaschen und 24 h i. Vak. getrocknet. Spuren von Verunreinigungen färben 7 gelb bis hellbraun. An Luft zersetzt sich 7 innerhalb von Sekunden. Es ist in SO₂ gut löslich. Reaktionsverlauf wie Ausbeute ändern sich nicht, falls man ein Verhältnis 1/AsF5 1:6 wählt. Ausb. 0.45 g (69%), Schmp. 197 °C (Zers.).

b) Umsetzung von 4e mit $AgAsF_6$: Wie angegeben werden in das eine Carius-Rohr 70.0 mg (0.24 mmol) 4e und in das andere 140.0 mg (0.47 mmol) AgAsF₆ gefüllt. Zu dem Silbersalz werden 5 ml SO₂ kondensiert, und das gelöste AgAsF₆ wird auf 4e geschüttet. Es tritt eine spontane Reaktion unter Bildung von AgCl und einer gelborangefarbenen Lösung ein. Nach 24stdg. Rühren bei 22 °C wird die Lösung dekantiert und das SO2 langsam durch Kondensation entfernt. Die zurückbleibenden geringfügig verunreinigten und daher gelb gefärbten Kristalle werden 24 h i. Vak. getrocknet. Ausb. 140 mg (>90%).

c) Umsetzung von 3a mit AsF₅: In einem 30-ml-Carius-Rohr mit Young-Ventil wird eine Suspension von 0.21 g (0.26 mmol) 3a in 10 ml SO₂ auf -196°C gekühlt, und 130.0 mg (0.77 mmol) AsF₅ werden zukondensiert. Nach 24stdg. Rühren bei 22°C erhält man eine gelbe Lösung. Nach Entfernen des SO₂ und 24stdg. Trocknen i.Vak. wird 7 in hellgelben Kristallen isoliert. Ausb. 290 mg (>90%). - ¹⁹F-NMR (SO₂): $\delta = -51.2$ (s, br). - ⁷⁷Se-NMR (SO₂): $\delta = 2435$ (s). - IR: $\tilde{v} = 974$ cm⁻¹ (m), 700 (vs, br), 621 (m), 581 (m), 560 (m), 500 (m), 388 (vs), 338 (m), 312 (w), 278 (w), 217 (m). - Ra: 680 cm⁻¹ (vs), 668 (s), 623 (m), 560 (m), 498 (s), 368 (m), 328 (m), 312 (s), 264 (vs). - MS (≈ 100 °C): Zu beobachten sind folgende

Zersetzungsfragmente: SN⁺, SeN⁺, As⁺, AsF⁺, AsF⁺₂, AsF⁺₃ und AsF_4^+ . A. E. N. S. (505.9)

A521	121 23362	(555.0)		
Ber.	F 38.27	N 4.70	S 5.38	Se 26.50
Gef.	F 39.7	N 5.1	S 5.3	Se 25.74

 $3\lambda^4, 5\lambda^4, 7\lambda^4$ -Trithia- $1\lambda^4$ -selena-2,4,6,8-tetraaza-9-azoniabicyclo[3.3.1]nona-1(9),2,3,5(9),6,7-hexaen-hexafluoroarsenat (8): In die bei ClN₂S₂Se beschriebene Apparatur werden 1.00 g (3.04 mmol) 6 gefüllt und 30 ml SO₂ sowie 0.52 g (3.06 mmol) AsF₅ zukondensiert. Das Gemisch wird 24 h bei 22°C gerührt, wobei man nach 1-2 h eine klare, gelborangefarbene Lösung erhält. Nach 24 h engt man vorsichtig bis auf ca. 2 ml ein; hierbei bilden sich hellgelb gefärbte Kristalle von 8. Die Lösemittelreste werden dekantiert, das Produkt wird dreimal mit ca. 3 ml SO₂ gewaschen und 24 h i. Vak. getrocknet. In SO₂ ist 8 schlecht löslich, an Luft erfolgt Zersetzung. Ausb. 0.25 g (66%), Schmp. $161 - 163 \degree C$ (Zers.). $- {}^{19}F$ -NMR (SO₂): $\delta = -58.4 [q, {}^{1}J({}^{75}As, {}^{19}F) = 942 Hz]. - IR: \tilde{v} = 1087 cm^{-1} (s),$ 1058 (s), 1002 (s), 993 (m), 827 (w), 698 (vs), 636 (m), 607 (m), 574 (w), 549 (m), 528 (m), 458 (m). - MS (≈ 120 °C): m/z (%) = 220 (18) $[Se_2N_2S^+]$, 184 (29) $[S_4N_4^+]$, 172 (16) $[SeS_2N_2^+]$, 160 (7) $[Se_{2}^{+}]$, 151 (76) $[AsF_{4}^{+}]$, 138 (76) $[S_{3}N_{3}^{+}]$, 132 (38) $[AsF_{3}^{+}]$, 126 (38) $[SeSN^+]$, 113 (41) $[AsF_2^+]$, 94/92 (73) $[SeN^+, AsF^+, S_2N_2^+]$, 78 (49) $[S_2N^+]$, 75 (10) $[As^+]$, 46 (100) $[SN^+]$.

> $AsF_6N_5S_3Se$ (434.1) Ber. As 17.26 F 26.26 N 16.13 S 22.16 Se 18.19 Gef. As 16.5 F 24.7 N 16.4 S 21.3 Se 16.8

CAS-Registry-Nummern

1: 112612-12-1 / 2a: 128644-33-7 / 2b: 128644-34-8 / 3a: 79135-72-1 / 3b: 79135-73-2 / 3c: 118804-13-2 / 3d: 134781-37-6 / 4a: 118739-23-4 / 4b: 118739-25-6 / 4c: 118804-74-3 / 4d: 118804-75-4 / 4e: 134781-38-7 / 5: 128644-35-9 / 6: 134815-45-5 / 7: 118739-27-8 / 8: $134781-36-5 / Se_2Cl_2$: $10025-68-0 / (CH_3)_3SINSO$: $7522-26-1 / LiN[Si(CH_3)_3]_2$: $4039-32-1 / ClN_2S_2Se$: $126094-85-7 / SCl_2$: $10545 - 90 / SeCl_2$: $1026-03.6 / ASE-7 / 784-36 - SE-7 / SCl_2$: $\begin{array}{c} 10545-99-0 \ / \ SeCl_4: \ 10026-03-6 \ / \ AsF_5: \ 7784-36-3 \ / \ SbF_5: \ 7783-70-2 \ / \ NbF_5: \ 7783-68-8 \ / \ BF_3: \ 7637-07-2 \ / \ SbCl_5: \ 7647-18-9 \ / \ PCl_5: \ 10026-13-8 \ / \ POCl_3: \ 10025-87-3 \ / \ TiCl_4: \ 7550-45-0 \ / \ TiCl_4: \ TiCl_$ [Se2N2S+Cl-]2: 126651-37-4 / AgAsF6: 12005-82-2

- ¹⁾ R. W. H. Small, A. J. Banister, Z. V. Hauptmann, J. Chem. Soc., Dalton Trans. 1984, 1377.
- ²⁾ G. Wolmershäuser, C. R. Brulet, G. B. Street, Inorg. Chem. 17 (1978) 3586.
- ³⁾ R. J. Gillespie, J. P. Kent, J. F. Sawyer, Inorg. Chem. 20 (1981) 4053.
- ⁴⁾ J. Adel, A. El-Kholi, W. Willing, V. Müller, K. Dehnicke, Chimia 42 (1988) 70.
- ⁵⁾ J. Adel, K. Dehnicke, *Chimia* **42** (1988) 413. ⁶⁾ P. F. Kelly, A. M. Z. Slavin, D. J. Williams, J. D. Woollins, *J.* Chem. Soc., Chem. Commun. 1989, 408.
- ⁷⁾ P. F. Kelly, I. P. Parkin, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, Angew. Chem. 101 (1989) 1052; Angew. Chem. Int. Ed. Engl. 28 (1989) 1047.
- ⁸⁾ E. G. Awere, J. Passmore, P. S. White, T. Klapötke, J. Chem. Soc., Chem. Commun. 1989, 1415.
- 9) A. Apblett, T. Chivers, J. F. Fait, J. Chem. Soc., Chem. Commun. 1989, 1596.
- ¹⁰⁾ R. J. Gillespie, J. P. Kent, J. F. Sawyer, Inorg. Chem. 29 (1990)
- ¹¹⁾ H. W. Roesky, J. Anhaus, W. S. Sheldrick, Inorg. Chem. 23 (1984)
- ¹²⁾ M. Becke-Goering, G. Magin, Z. Anorg. Allg. Chem. 340 (1965) 126.
- ¹³⁾ A. Haas, J. Kasprowski, Chimia 41 (1987) 340.
- ¹⁴⁾ R. Steudel, J. Steidel, N. Rautenberg, Z. Naturforsch., Teil B, 35 (1980) 792
- ¹⁵⁾ G. Schubert, G. Gattow, Z. Anorg. Allg. Chem. 574 (1989) 165.
- ¹⁶⁾ G. Schubert, G. Kiel, G. Gattow, Z. Anorg. Allg. Chem. 575 (1989) 129.

- ¹⁷⁾ J. Adel, C. Ergezinger, R. Figge, K. Dehnicke, Z. Naturforsch., Teil B, 43 (1988) 639.
- ¹⁸⁾ R. J. Gillespie, P. R. Ireland, J. E. Vekris, Can. J. Chem. 53 (1975) 3147.
- ¹⁹⁾ A. Awere, J. Passmore, K. F. Preston, L. H. Sutcliffe, Can. J. Chem. 66 (1988) 1776.
- D. K. Padma, R. Mews, Z. Naturforsch., Teil B, 42 (1989) 699.
 W. A. Shantha Nandana, J. Passmore, P. S. White, Chi-Ming Wong, Inorg. Chem. 28 (1989) 3320.
- ²²⁾ A. Zalkin, T. E. Hopkins, D. H. Templeton, Inorg. Chem. 5 (1966) 1767
- ²³ W. Wucherpfennig, G. Kresze, *Tetrahedron Lett.* 1966, 1671.
 ²⁴ R. L. Patton, W. L. Jolly, *Inorg. Chem.* 8 (1969) 1389.
 ²⁵ R. L. Patton, W. L. Jolly, *Inorg. Chem.* 8 (1969) 1389.
- ²⁵⁾ K. Tanaka, T. Yamabe, A. Noda, K. Fukui, H. Kato, J. Phys. Chem. 82 (1978) 1453.
- ²⁶⁾ T. Chivers, A. W. Cordes, R. T. Oakley, P. N. Swepton, Inorg. Chem. 20 (1981) 2376.

- ²⁷⁾ T. Chivers, W. G. Laidlaw, R. T. Oakley, M. Trsic, J. Am. Chem. Soc. 102 (1980) 5773.
- ²⁸⁾ U. Thewalt, M. Burger, Z. Naturforsch., Teil B, 36 (1981) 293.
- ²⁹⁾ J. Eicher, P. Klingelhöfer, V. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 514 (1984) 79.
- ³⁰⁾ J. Passmore, M. J. Schriver, Inorg. Chem. 27 (1988) 2749.
- ³¹⁾ A. J. Banister, H. G. Clarke, I. Rayment, H. M. U. Shearer, *Inorg. Nucl. Chem. Lett.* **10** (1974) 647.
- 32) H. Vincent, Y. Monteil, M. B. Berthet, Z. Anorg. Allg. Chem. 471 (1980) 233
- ³³⁾ W. Isenberg, R. Mews, Z. Naturforsch., Teil B, 37 (1982) 1388.
- ³⁴⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55399, der Autoren und des Zeitschriftenzitats angefordert werden.

[72/91]